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RATIONALE AND SUMMARY OF METHODS FOR DETERMINING
ULTRASONIC PROPERTIES OF MATERIALS AT LAWRENCE

LIVERMORE NATIONAL LABORATORY*

ABSTRACT

This report is a summary of the methods used to determine ultrasonic velocities through the

many materials tested at the Acoustic Properties of Materials Laboratory. Ultrasonic

velocity techniques enable us to determine material properties, including elastic moduli,

without harming the materials being tested, an advantage some over mechanical methods.

Ultrasonic modulus determination has other advantages as well:  1.)  relative ease and low

cost of material preparation, and,  2.)  comparative analysis to physical testing as a function

of material loading rate dependence. In addition, ultrasonic measurement provides clues to

determine grain size and orientation, and provides a relative indication of material

anisotropy with respect to the material geometry.  We usually perform ultrasonic

measurements on materials in ambient atmospheric conditions, and in a relatively free-free

condition.  However, we can perform them in other environments, as required.

This paper describes some of our techniques and shows how ultrasonic velocities are used

to establish elastic constants. It also includes a sample test report for a homogeneous

isotropic solid, along with a list of references.

INTRODUCTION

Questions are frequently asked about the techniques used at the Lawrence Livermore

National Laboratory to determine the velocity of sound through the various materials

examined in the Acoustic Properties of Materials Laboratory, Manufacturing & Materials

Engineering Division.  Acoustic techniques enable us to measure material properties

without harming the materials being tested, an important advantage over other methods.

This paper describes some of the techniques and foibles used to measure sonic velocities

and how these velocities are used to establish the elastic constants of investigated materials.

However, it is not intended, nor should the reader infer that this report is comprehensive,

since there is a limitation on how much a report of this size should contain.  Moreover,

there are a great many books available for the reader who wishes more detail.  Books on

elastic waves generally fall into two broad categories:  applications and theory. The
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bibliography at the end of this report lists selected material in these two areas of elastic

wave research.  An example of a test report is given in Appendix A.

TABLE OF SYMBOLS

a = coefficient of thermal expansion (m/m/˚K)

CF = Sound velocity in fluids (m/s)

CL = longitudinal velocity (m/s)

CM = mean integrated velocity (m/s)

CO = extensional velocity (m/s)

CS = shear velocity (m/s)

CP = specific heat at constant stress (J / kg·˚K)

E = Young's modulus (Pa)

EA = adiabatic Young's modulus (Pa)

EI = isothermal Young's modulus (Pa)

f = frequency (Hz)

G = shear modulus (Pa)

h = Planck's constant (662.60755 x 10 -36 J·s)

K = bulk modulus (Pa)

k = Boltzmann's constant (13.80658 x 10-24 J /˚K )

h/k = constant  (47.99216 x 10 -12 ˚K·s )

M = atomic weight
_ _

M = mean atomic weight

N = Avogadro's number (602.2167 x 1021 gmol -1)

P = number of atoms per molecule

R = reflection coefficient

Z = acoustic impedance (kg/m2·s)

ε = strain (m/m)

θ = Debye temperature (˚K)

λ = wavelength (m/cycle)

λ ' = Lame modulus (Pa)

ν = Poisson's ratio

ρ = density (kg/m3)

σ = stress (Pa)
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DETERMINING ULTRASONIC VELOCITY

ULTRASONIC TRANSDUCTION

The measurement of ultrasonic velocities depends upon generating a dynamic pressure

wave (pulse) into a material of known thickness and measuring the transit time of the

emerging acoustic pressure wave.  The generation and detection of an acoustic wave is

usually accomplished by a piezoelectric transducer.  The element is cut to a particular

frequency, mode of operation (compressional, distortional, etc.), and is then assembled

into a transducer case.  The element has a measured amount of mechanical damping applied

to the back surface.  The transducers are purchased from commercial transducer

manufacturers for the specific purpose of measuring the ultrasonic velocities with a high

degree of resolution.  Piezoelectric transducers are frequently used instead of

magnetostrictive transducers because they are more adaptable to extreme ranges of

frequency, have greater conversion efficiency and provide the greatest sensitivity.  There

are vast differences in frequency response, selectivity and sensitivity among the various

materials used for their piezoelectric properties.  Transducer manufacturers have discovered

methods to significantly alter many transducer characteristics, such as, using mechanically

coupled damping materials to prevent the excessive ringing following the initial excitation

of the piezoelectric element.  Many aspects of transducer fabrication rely on propriatary

factors.

The shape of the pulse, generated by the electronic pulser, has a major influence on the

pressure wave induced in the material.  The input pulse is generally shaped to form a tail

pulse in order to damp ringing following the initial pulse step.  The ideal broadband

pressure pulse should:  (a) be a (sin x)/x function, since such a pulse can be shown to have

an extremely wide bandwidth, and (b) have a well defined, characteristic peak.  In practice,

the (sin x)/x pulse is approximated by filtering the pulse spectrum at the spectrum extremes.

The result of this attenuation is a time domain pulse of 5 to 7 half-cycles, with a well

defined peak amplitude at the center.  In the spectral domain, this waveform is shown

bandpassed, resulting in the attenuation of both the lowest and highest frequencies, with a

gradual peaking at the central frequency that, in turn, is proportional to the reciprocal of the

period of the central peak in the time history.
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REFLECTION OF THE ULTRASONIC WAVE

Reflection of the ultrasonic wave occurs at the interface of two different acoustic

impedances.2  The specific acoustic impedance is given in rayls (kg/m3·s).  The acoustic

impedance is defined for bulk materials where the sound propagation is normal to the

transducer to specimen interface as ρCL, where ρ is the mass density and CL is the

longitudinal velocity of sound in that medium.  However, the impedance is further

multiplied by the cross-sectional area for materials that are small compared to the

wavelength of the sound.  Materials whose lateral dimensions fall between 0.2λ and 5λ are

avoided since the resulting longitudinal velocity is not defined.  The transducer-to-specimen

interface is a planar surface that frequently involves two or more different acoustic

impedances.  This difference in impedances causes a phase shift of the reflected ultrasound

under specific conditions.  The general equation for the sound pressure Reflection

Coefficient shows how the phase shift may occur.

R = 2Z / 1Z( ) − 1

2Z / 1Z( ) + 1

This indicates that when the sound is reflected from an interface where the second medium

has a lower acoustic impedance than the first medium, a 180° phase shift occurs.  The

sound transmitted through an interface undergoes no phase shift, however.  There may be

varying amounts of phase shift from zero to several radians, depending upon the relative

complex impedances involved in the reflection.  This phase shift causes a discrepancy in

the measured sound velocity, as described by McSkimin.3,4  The phase shift is a result of

the transit (round-trip) time for sound to penetrate through the couplant and through the

piezoelectric element and transducer wear face.

The usual method of measuring the time between reflected ultrasonic echoes shows a

disparity in the time interval between one pair of adjacent echoes compared with the time

interval between any other pair of adjacent echoes in an echo train. The amount of error

may be determined, and the velocity of sound thereby corrected, by a technique known as

the Pulse Superposition Method.3-5

This technique was further refined and modified by Papadakis6,7 to include the correction

for ultrasonic diffraction loss and phase change. This later technique replaced the former

method of time interval, or echo repetition rate measurements, with a frequency
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measurement.  The horizontal sweep on an oscilloscope is driven by an oscillator operating

on a frequency whose period is equal to the time between echoes. The frequency is

measured by a frequency counter, increasing the number of significant digits, which in turn

increases the precision of the measurement. In addition, a tone burst generator permits a

slight shift in the piezoelectric driving frequency that allows the operator to detect, and

correct for, the amount of phase shift that has occurred within the specimen, thereby

increasing the accuracy of measurement.  This technique is amoung those used at LLNL for

the determination of the ultrasonic velocities in lightly attenuating specimens that permit the

ultrasound to form multiple echoes.

If the specimen is highly attenuating, multiple echoes cannot be detected and a single

through-the-specimen pulse is measured for the time interval. The accuracy of the time

interval measurement can be enhanced by an acoustic buffer or delay line.  The accuracy

can be only roughly estimated for velocities where extreme attenuation of sound causes

difficulty in defining a separation of the pulse from the noise.  In addition, the sound-

attenuating materials usually force the use of thin specimens and low frequency

transducers, further degrading the accuracy of the measurements.

DERIVATION OF SONIC VELOCITIES

The derivation of the sonic velocities is a property of the elastic constants of materials.  The

analysis of the fundamental assumption of elasticity theory, which states that linear stress is

proportional to linear strain,

 ijσ = ijklC klε ,

is the origin of all further analysis. In general, it may be shown that for any prescribed

direction of propagation three plane waves can exist.  The direction of propagation is taken

to be perpendicular to the planes of equal phase.  The phase velocities (V) for these waves

may be obtained from the density ρ and the elastic stiffness moduli by the use of the

Christoffel relations.  The number of physical properties may be substantially reduced,

depending upon the crystallographic symmetries, according to Neuman's principle8,12 by a

reduction of redundancies.  An example of a simple cubic, single crystal is shown below.

The required elements for isotropic materials are adapted from the simple cubic as

illustrated.  The directional arrows show the particle direction for the shear waves.
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11c = 22c = 33c
12c = 13c = 23c
44c = 55c = 66c

Where:

   12c = 11c − 2 44c   and 2V = ijc ρ

For isotropic materials, a simplification from

three measurements to two measurements is

performed as follows:

44c = 55c = 66c = 0.5 11c − 12c( )

Y (2)

X (1)

Z (3)

CUBIC UNIT CELL

+

+

+

c33

c55

c44

c66

c44

c22

c11

c55

c66

The elastic constants are derived as follows8:  11c = 2G + λ'   and  12c = λ' .  Converting

stiffness constants to compliances, the values for Young's modulus, Poisson's ratio, and
the shear modulus may be derived.  11s = 1 E ,  12s = − ν E ,  and 2 11s − 12s( ) = 1 G .  From

these relations follows,  G = E 2 1 + ν( )[ ].  Where the compliances are,

11s = 11
2c − 12

2c
11c − 12c( ) 11c 11c + 12c( ) − 2 12

2c{ }   and  12s = 12
2c − 12c 11c

11c − 12c( ) 11c 11c + 12c( ) − 2 12
2c{ }  .

Isotropic materials provide the greatest reduction in number of elastic moduli since for any

direction through the material, the moduli are repeating. Anisotropic materials are

frequently sent into the laboratory for ultrasonic velocity measurements, but it is seldom

that such materials are sent in for moduli calculation. The primary reason for this is

probably one of the following:

1. The crystallographic axis is not known.

2. Only one specimen of a single crystallographic orientation is available
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3. Cost or time is prohibitive.

4. The client submitting the specimen is only interested in knowing whether or not it

is anisotropic.

For this reason, the rigorous analysis of elastic constants for anisotropic materials will not

be described here, and the reader is referred to some excellent treatises on the subject.1,8

The subject matter described here is concerned with the unique solutions of the basic matrix

equations for isotropic materials. Indeed, the material requirements for these analyses are

rigidly limited to both isotropic and homogeneous materials. The principal ultrasonic

velocities measured at the laboratory are the infinite medium (bulk specimen) longitudinal

and shear velocities, although the extensional velocity is measured, on occasion, on wires,

fibers, and thin rods.

SPECIMEN GEOMETRY

The specimen geometry for a particular ultrasonic velocity determination may have a

decided effect on the wave propagation mode and on the measured wave speed.  Generally,

velocity determinations are more accurate on relatively thick specimens, for three reasons:

1. As the thickness of the specimen increases, so does the number of significant digits to

which one can accurately measure the thickness.

2. The effect on specimen geometry of a short time interval change in ambient temperature

decreases with thickness due to the greater specimen volume (thermal inertia).

3. The pulsed ultrasound pressure wave has finite dimensions, generallized as a relatively

small diameter cylinder or cone, roughly approximating the diameter of the transducer

within the near field and spreading conically in the far field to:  sin
θ
2

= 0.514
λ
D

, where D

is the transducer diameter:  Calculated for the -6 dB down amplitude for flat transducers.

4. The first maxima back from the extreme far field (Y+O) is given as CS = Zλ
2a

= Z LC
2a f

= 1,

where Z is the distance along the ultrasonic beam, CL is the longitudinal velocity of the

medium, a is the transducer radius, λ is the wavelength, and f is the frequency in Hertz.

The start of the far field in the ultrasonic beam profile is approximated as:  
2D f

4 LC
, where D

is the transducer diameter.
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The induced pressure wave should involve no more than one-sixth of the smallest

dimensions of a specimen, depending upon the desired wave propagation mode. While it

can be shown, one may intuitively see that as a sound pressure wave interacts with the

specimen boundaries, tension, compression and shear forces contend for position, with the

result that during this convolution of waves a severe distortion and interference of the

waves occurs, rendering accurate measurement of time of arrival of these waves difficult.

Most materials tend to perform as mechanical filters to ultrasound.  Most generally, the

materials behave like low pass filters, which attenuate the amplitude of the pressure waves

in proportion to the increasing frequency and the increasing thickness in the direction of the

wave propagation. However, attenuation is also a function of many other phenomena

inherent in the materials, see Appendix B. Losses in solids are mainly the result of heat

conduction, viscous friction, dislocation motion, and scattering.  Losses in high-polymer

materials (plastic, rubber, etc.) is mainly of viscous nature.  It is therefore neither practical

nor possible to set down a fixed specimen geometry beyond stating that the specimen may

have flat, parallel faces with a parallelism of better than 25 x 10-5 (in./in., m/m, etc.) for

many polycrystalline materials, and to about 10-6 for single-crystal specimens.

In addition, for most materials the diameter, and for rectangular specimens the edge

dimension, should be three times the thickness (an aspect ratio of ≥3:1). The thickness is

usually 3 to 25 mm, depending upon the attenuation properties of the material.  Sometimes

these dimensions are radically altered, as for example, when the material is found only in

the shape of rods, or wires, or  even a textile yarn.  A specialized geometry is required

when the acoustic velocities are desired as a function of stress, strain, or temperature.

Proper specimen preparation is essential for the determination of specific ultrasonic

velocities.

VELOCITIES:  LONGITUDINAL AND SHEAR WAVES

Longitudinal Velocities

The first velocity usually determined is the longitudinal, often referred to as compressional,

nondistortional, L wave, P wave, waves of dilatation, and irrotational waves. The

longitudinal velocity is specimen-geometry to wavelength dependent. Thin bars, rods, or

wires will propagate a longitudinal wave at a lower velocity than the same material of

infinite dimension. The first observation of this difference in velocities shows a strong

wavelength dependence.  When the wavelength (λ = C/f) is less than one-fifth of the solid

specimen's lateral dimensions along the path of wave propagation, the specimen is often

referred to as a bulk specimen, and the velocity is often referred to as a bulk specimen
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longitudinal velocity.  This is the velocity most usually measured at the laboratory, and it

has a definite relationship to the elastic properties of a solid isotropic homogeneous

material:

LC = E

ρ
1 − ν

1 + ν( ) 1 − ν( )








 (1)

E = Young's Modulus, ρ = density, ν = Poisson's ratio.

Shear Velocities

The shear wave appears to be the most easily propagated waveform in nature and usually

has the highest amplitude.  Shear waves predominate in seismic activities and in all forms

of fracturing. Typically, shear waves exhibit amoung the lowest frequency of vibration of

sound within a specimen and amoung the greatest displacement of material. Shear waves

are often called transverse waves, distortional waves, rotational waves, torsional waves,

and S waves.  They are usually the most difficult kind of wave to generate with

transducers, and since the shear velocity is approximately one-half the velocity of

longitudinal waves, the shear wavelength is on the order of one-half the wavelength of

longitudinal waves for the same frequency.  For this reason it is frequently necessary to use

a shear wave frequency that is one-half the maximum longitudinal wave frequency.  Some

materials may support a longitudinal wave to the exclusion of shear waves, but any material

that supports a shear wave will support a longitudinal wave.  All other wave velocities,

e.g., Stonely, Lamb, Rayleigh, Love waves, and thin rod or bar longitudinal waves, can

exist only because the material can sustain both a shear and longitudinal wave. Materials

that cannot sustain a shear wave, or shearing force, must be materials that are perfectly

fluid, i.e., have zero viscosity.  The shear velocity, CS, is related to the shear modulus in

isotropic homogeneous materials by

SC = G ρ                                                     (2)

where G is the shear modulus and ρ is the density.

The particle direction of shear waves generated by shear wave transducers is always normal

to the propagation direction.  Shear waves are divided by usage into two types, Sv and SH,

called shear vertical and shear horizontal, depending upon the particle direction with respect

to the propagation direction.  SH waves are usually introduced into a material through a

wedge such that the particle direction is in the plane of the material.  The SH wave will not



1 0

mode convert to a longitudinal signal, but remain as a pure shear wave.  The Sv wave may

also be introduced into a material through a wedge, but the particle direction is

perpendicular to the propagation of the SH wave.  As Sv the wave just touches the material,

part of the wave enters the material at the same moment that it is still partly in the wedge.

This Sv wave will mode convert according to Snell's law,9 which states

 
sin Sθ

SC
= sin Lθ

LC
= sin L

'θ
L
'C

= sin S
'θ

S
'C

(3)

where:

θS = shear angle in the first medium,

θL = longitudinal angle in the first medium,

CS = shear velocity in the first medium,

CL = longitudinal velocity in the first medium,

        and the primed values refer to the second medium.

This is the same condition that exists when a longitudinal wave is introduced into a material

at an angle.  Angles are referenced to the axis-normal (perpendicular) to the plane of the

specimen.  Note that there is no refracted critical angle when the sound velocity in the first

medium  is greater than the sound velocity in the second medium.  When the longitudinal

sound velocity in the first medium is less than the sound velocity in the second medium, the

incident longitudinal wave angle will be:  1θ = sin−1 1C
2C
sin 2θ





, and when the refracted

longitudinal wave is at the first critical angle, the refracted shear wave (Sv) angle will be:

2θ = sin−1 1 − 2ν( ) 2 1 − ν( )   .

The Sv wave also results when a shear-wave transducer at normal incidence is coupled with

a viscous, sticky, resinous coupling agent to a material capable of sustaining shearing

forces.

COUPLING THE TRANSDUCER TO THE SPECIMEN

The ultrasonic transducer must be coupled to the material in such a manner as to exclude the

presence of air voids. With shear waves, coupling is even more critical than with

longitudinal waves.  Coupling may be accomplished through pressure if the transducer face

and material have excellent mating surfaces, similar to those of gage blocks. Transducers

are sometimes coupled to specimens with adhesives or low-melting-temperature salts, but

easier methods are usually available.  Specimens may react to certain coupling agents or
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otherwise adversely affected by absorption; in these cases, coupling can sometimes be

accomplished by a combination of pressure and a sheet of Saran Wrap© sandwiched

between the specimen and the transducer. The usual shear wave couplant is a modified

resin without a catalyst.  This resin has a high viscosity at or below room temperature, but

thins rapidly as the temperature increases.  It works well for longitudinal waves as well as

shear waves.

RELATIONSHIP BETWEEN ULTRASONIC VELOCITY AND ELASTIC
MODULI

YOUNG'S MODULUS

By virtue of symmetry, the relationship of the ultrasonic velocities to the tangent modulus

is found for isotropic homogeneous materials from a simplification of the 36 possible

elastic constants derived for anisotropic materials.  The formulae for isotropic

homogeneous materials is shown below.  The longitudinal velocity is given by

OC = OY
ρ

= (1 − ν)
(1 + ν)(1 − 2ν)

 when the wavelength of the propagating ultrasound

is greater than five times the diameter of the rod or bar.  The effective stiffness modulus YL

of such a constrained1 section will be higher than the Young's modulus YO for a free bar.

LC = LY ρ = OY
ρ(1 − b)

 where the formula for YO takes into account the

restraining forces for CL.  OY
LY

= 1 − b , and b = 2 2ν (1 − ν),   with the limit of b = 1 when

ν  = 0.5.  The stiffness modulus is a complex number with the imaginary part

corresponding to the loss factor.  When the loss factor is small, it is usually ignored and the

stiffness modulus is reported as a scaler number.

 LC = K + 4 3( )G( ) / ρ (4)

where  K = bulk modulus, G = shear modulus, and

LC = E ρ( ) 1 − ν( ) / 1 + ν( ) 1 − 2ν( )( )[ ] (5)

1 The propagating ultrasound through the length of a bar will cause the lateral
dimensions to change, dynamically, with respect to the position of the
pressure wave within the bar.  A material with infinite lateral dimension does
not constrain the lateral edges of the longitudinal stress wave.
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where ν = Poisson's Ratio.  When ν is 1/2, CL is indeterminate.

However, Young's modulus is equivalent to

E = 3K 1 − 2ν( ) (6)

Now, by substituting Eq.  (6) into Eq.  (5), a condition may be established that will hold

for an ideal, simple fluid, i.e., a fluid with no viscosity.  First let

3 1 − 2ν( ) 1 − ν( ) / 1 + ν( ) 1 − 2ν( )[ ] = 1   (7)

The solution of Eq.  (7) yields

3 1 − 2ν( ) = 1 + ν
2 = 4ν
ν = 1 2

Therefore, since ν = 1/2, the material meets the fluid requirement, and the substitution for

velocity can be completed for the perfect fluid condition

FC = K ρ (8)

which describes the velocity of sound through many liquids and gases.  The shear velocity

is found in materials that sustain shearing forces, such as most solids and many viscous

fluids.  The shear velocity of sound is given by

SC = G

ρ
(9)

Now, one may mistakenly combine Eqs.  (8) and (9) and substitute the result back into Eq.

(4), which would then yield

     LC = ρ fC − 4 3( ) S
2C[ ] / ρ = fC 2 − 4 3( ) S

2C (10 )

However, the earlier requirement placed upon the validity of Eq.  (8) will be violated if the

validity requirement for Eq.  (9) remains extant, that is, a material may not be a perfect fluid

and sustain shearing forces. It is left to the reader to conjecture whether Eq. (10) could

prevail immediately after the detonation of a high explosive into a solid material, causing

that material to become totally fluid for an instant.  It is not likely, however, that the

material could sustain shearing forces during that instant in time. There is another
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longitudinal sonic velocity that is encountered in materials capable of sustaining a shearing

force.  This longitudinal velocity is called the extensional, bar, or thin rod velocity.  Rods,

bars, or wires that are subjected to a compressional wave with a wavelength greater than

five times the cross sectional dimension of the rod permits the wave to propagate at a

reduced velocity compared with the bulk specimen longitudinal wave.  This velocity, CO, is

related to Young's modulus by Eq.  (11).

OC = E ρ (11)

and is either calculated from CL and CS or measured from specially designed specimens and

transducers.  By solving Eq.  (9) for the shear modulus,

G = S
2C ρ (12)

and by substituting this equation into Eq.  (4), the bulk modulus is calculated:

  L
2C = K + 4 3( ) S

2C ρ[ ] / ρ

and

K = ρ L
2C − 4 3( ) S

2C[ ] (13)

  The relationship of Young's modulus to the bulk and shear modulus is

E = 9KG G + 3K( ) (14)

If Eq.  (13) is substituted for K, and Eq.  (12) is substituted for G in Eq.  (14), Young's

modulus becomes

E = ρ S
2C 3 L

2C − 4 S
2C( ) L

2C − S
2C( ) (15)

and by substituting Eq.  (15) into Eq.  (11), the extensional velocity becomes

OC = S
2C 3 L

2C − 4 S
2C( ) L

2C − S
2C( ) (16)

The dependence of the extensional velocity on a shear velocity is apparent and is consistant

with the concept that materials that cannot support shearing forces, such as fluids with zero

viscosity, cannot propagate an extensional velocity.  The extensional velocity may be

visualized as a compressional pressure wave that exhibits a maniscus effect on the

specimen walls as the wave propagates along the rod axis.
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POISSON'S RATIO

It is axiomatic that the elastic constants are all interrelated.  Therefore, once the isotropic

moduli are established, Poisson's Ratio may be calculated.  Poisson's Ratio is also a

function of the ratio of the longitudinal and shear velocities,

ν = 1 − 2 SC LC( )2[ ] 2 − 2 SC LC( )2[ ] (17)

and a set of curves is shown in the Nondestructive Testing Handbook21, depicting the ratio

of any two of four ultrasonic velocities as a function of Poisson's Ratio.

LAME' CONSTANTS

There are two Lame elastic constants calculated from the ultrasonic-velocities.  One of the

Lame constants has been given as the shear modulus. The other is sometimes listed as the

Lame' modulus, λ '. The Lame' modulusl0 is a governing factor for both the longitudinal

and shear velocities:

L
2C = λ' + 2G( ) ρ                                              (18)

and by rearranging the formula, the Lame' modulus is

    λ' = ρ L
2C − 2 S

2C( ) (19)

The Lame modulus is perhaps of interest to those who work with plastic materials. As

Poisson's Ratio increases, the Lame modulus will numerically approach the bulk modulus.

The shear modulus will disappear as the viscosity of the fluid approaches zero.  This may

be observed from the recognition of the equation for bulk modulus:  K = λ' + 2µ
3

 , where

shear approaches zero for fluids and, simultaneously, Poisson's ratio approaches 0.5.  The

compressional velocity for fluids is proportional to the bulk modulus as shown in equation

8.

DEBYE TEMPERATURE

The thermal loss mechanisms (temperature dependence) of materials is most suitably

described in terms of the Debye temperature, θ  .  The Debye temperature may be calculated

with the help of the infinite medium, shear, and longitudinal velocities.  The mean

integrated velocity5 is calculated for the isotropic material and then fed into an equation
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containing Planck's constant, Boltzmann's constant, Avogadro's number, the mean atomic

weight, and the density of the material. The mean integrated velocity, CM, is given by

MC = 3 SC LC( )3
2 L

3C + S
3C( )[ ]1 3

(20)

and the Debye temperature, θ, is

     θ = h k( ) 3PρN 4π
_ _

M





1 3

MC  , (Degrees Kelvin) (21)

Where:

h/k = Planck's constant / Boltzmann's constant = 47.99216 x 10-12 °K•s,

P = Number of atoms per molecule,

N = Avogadro's number (602.2167 x 1021 kmol-1)
_ _

M  = Mean atomic weight.

ADIABATIC VERSUS ISOTHERMAL YOUNG'S MODULUS

Ultrasonic velocity measurements in material testing do not allow sufficient time for thermal

diffusion. Therefore, Young's modulus, as calculated from the ultrasonic velocities, is the

adiabatic modulus,l which is slightly higher than the isothermal modulus.  The relationship

between the adiabatic and isothermal Young's modulus is given by:

AE iE = 1 + 2a T AE ρ PC( ) (22)

iE = AE 1 + 2a T AE ρ PC( )( )[ ]
AE = iE ρ PC ρ PC − iE 2a T( )

Where:

 a  = coefficient of thermal expansion, m/m/ °K

Cp = specific heat at constant stress, J/kg•°K

T = absolute temperature

ρ = density

EA = adiabatic Young's modulus

Ei = isothermal Young's modulus
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WHAT ELSE?  A LOOK AT SOME OTHER TECHNIQUES

A particularly useful technique for measuring ultrasonic velocities in a variety of materials

at elevated temperatures was established at the laboratory by Duneganll from a compilation

of experiments performed by McSkimin,l2 and Reynolds.l3 This technique required special

machining of the specimens into two concentric continuous solid cylinders of different

diameters and lengths.  The larger diameter cylinder was threaded with 32 threads per inch

to prevent interfering reflections from the circumference. This specimen allowed

simultaneous measurement of the longitudinal and shear velocities from very low

temperatures to about 870°C.  Special furnaces and cooling collars would have to be

assembled before the test could be repeated.  The technique worked out by Reynolds is

shown on the following page:
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Y

θ2

θ1

Z

D

sin 1θ = 1∴sin 2θ = SC
LC
  from  

sin 1θ
LC

= sin 2θ
SC

∆T = Z

SC
− Y

LC
 ;  But  Z = Y

2sinθ
= Y LC

SC

∴∆T = Y LC
S
2C

− Y

LC
= Y LC

S
2C

− 1

LC






 (a)

Y = 2Z − 2D Where 2Z = 2Y L
2C
S
2C

2Y = 2Y L
2C
S
2C

− 2D   ; 2−D = 2Y 1 − L
2C
S
2C







REYNOLDS METHOD FOR DETERMINING SHEAR VELOCITIES

The rod should be machined as a smooth, solid, right-circular cylinder with perpendicular

and parallel faces.  Solve for the shear velocity through transcendental equations.

Nominal dimensions for most metals are 16 mm diameter by 64 mm long.

2Y =
2−D

1 − L
2C
S
2C

=
2D

L
2C
S
2C

− 1
=

2D S
2C

L
2C − S

2C
∴Y = D SC

L
2C − S

2C
(b)

Substitute (b) into (a):

∆T = D SC
L
2C S

2C
LC
S
2C

− 1

LC






 = D SC

L
2C − S

2C
L
2C − S

2C
S
2C L

2C








∆T =
D L

2C − S
2C

LC SC
  ; L

2C S
2C ∆ 2T = 2D L

2C − 2D S
2C

S
2C L

2C ∆ 2T + 2D( ) = 2D L
2C   ; S

2C =
2D L

2C
2D + L

2C ∆ 2T
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S
2C = L

2C

1 + L
2C ∆ 2T

2D

∴ SC = LC

1 + L
2C ∆ 2T

2D

= LC

1 + LC ∆T

D






2

∆TC L

Ultrasonic pulse echo waveform showing the initial pulse with longitudinal echoes and
∆Ts.

In another technique, the ultrasonic velocities were measured through the various axes of

BeO, ZnO, and CdSe, hexagonal single crystals, for the purpose of calculating the elastic

constants.14 This technique was adopted from work performed by McSkiminl2 and

involved the measurement of velocities through very small single crystals mounted to the

end of a special quartz buffer rod.  The longitudinal velocity was also measured with the

aid of a water collimator-transducer system.  These measurements used a tone burst

generator with an adjustable pulse duration.  The frequency tuning and long pulse duration

resulted in ultrasonic echo interferometry.  Constructive and distructive interference

alternated with an increasing frequency as a result of specimen resonance.

Acoustic analysis of solid materials catagorized as thin rods, thin plates, or thin bars is

often performed somewhat differently from the earlier discription on bulk materials.  Sound

generated into thin material may have a wavelength greater than five times the smallest

material dimension.  A typical test material might be wires.  An analysis of the wave

properties in uniform diameter thin materials such as wire is shown below:

ULTRASONIC REFLECTIONS OF PRESSURE WAVES BASED UPON
ACOUSTIC IMPEDANCE BETWEEN A BUFFER AND A SPECIMEN

Materials that  are available as thin rods or wires are uniquely suited to magnetostrictive

delay line applications.  Some anisotropic or non-homogeneous materials available as thin

rods, such as solid rocket propellant or samples of wood or bone, may be evaluated using

the magnetostrictive delay line technique.  The magnetostrictive induced ultrasound will

permit comparisons between similar materials.  In addition, this technique may be used in

the most hostile of environments provided that the specimen remains intact during the

measurement of the ultrasonic propagation velocities.
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The magnetostrictive delay line technique is used for the measurement of both extensional

(compressional) and torsional (shear) wave velocities.  The propagation of these waves is

non-dispersive if the wavelength is greater than five times the diameter of the thin rod.  The

two velocities are then used, together with the mass density, to derive the various moduli.

In order to receive the two interface reflections (delay line to specimen, and specimen to air)

with nearly equal amplitudes for both wave velocities, a solution to a binomial equation is

required.  Let the delay line to specimen interface reflection be "A" amplitude, and let the

specimen to air reflection be "B" amplitude and "C" the second echo from the specimen to

air interface.  The assumptions for the boundary conditions may be found in "Pressure

Reflectivity and Transmissivity.

Z1 Z2

A B C
Buffer Specimen

As a guide, the following is generally true for most metal specimens that are bonded to the

magnetostrictive delay line.  The following summary will be developed later in this paper.

For extensional waves, the echo amplitudes from the specimen/delay line interface and

from the end of the specimen, A = B when the specimen diameter is approximately half the

line diameter.  Then, A/B = 4 for torsional waves.  Try for (A/B)ext. = (B/A)tors., and the

specimen diameter will be about 0.5 times the delay line diameter for extensional waves and

about 0.7 times the delay line diameter for torsional waves.    The optimum diameter ratio

for extensional waves is 2:1, and the optimum diameter ratio for torsional waves is 21/2:1,

or 1.4:1.  The average for the two calculations will be about 0.6 times the delay line

diameter.  Non-metal specimens may have diameters approximating the diameter of the

delay line.  The optimum impedance ratio is the governing factor for establishing the

optimum echo amplitudes.  The length of a specimen should approximate an integer

multiple of a half wavelength.

This analysis is based upon an ultrasonic transducer that is attached to one end of a  buffer

rod and the opposite end of the buffer rod is attached to a specimen.  The acoustic

impedance of the buffer is Z1; the specimen is Z2.  The Reflection Coefficient (R) and the

Transmission Coefficient (T) corresponds to the pressure wave distribution on the outgoing

wave.  The returning pressure waves, upon encountering the acoustic interfaces, have a

Reflection Coefficient of (R' ) and a Transmission Coefficient of (T' ).
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Let: The acoustic impedance ratio for pressure waves:     r = Z2 Z1

Then:     R = r − 1( ) r + 1( );     T = 2r r + 1( );     T = 1 + R

      R
' = 1 − r( ) 1 + r( ) ;       T

' = 2 1 + r( ) ;

      T
' = 1 + R' = 1 − R

The first interface echo, A1, returning from the buffer-specimen interface, and the

subsequent echoes A2...AN (where N is the echo number) returning from the free end of

the specimen are related in amplitude by the corresponding acoustic impedances, (Z1, Z2)

so long as the echoes are non-interfering with each other.  The echo relative amplitudes,

assuming that the attenuation is negligibly small, are equal to:

    A1 = R

      2A = 1 − R 2( ) = 1 − R( ) 1 + R( ) = TT '

      A3 = R' 1 − R 2( )
      AN = 'N −2R TT ' Where N is an integer ≥ 3

The end echo of a series of repeating acoustic interfaces will be proportional to

    ± 'NR TT ', depending upon whether the termination is "open" or "short" circuited,

respectively.  If the attenuation is considered, the correction for the attenuation coefficient
in nepers per unit length, α, is       exp −2αL( ) A2;        exp −4αL( ) A3 .  Also, see Appendix

C.

Where:  
      
α = ln R 2A 3A( ) 2L .

The ability to match the reflected amplitudes of the echoes returning from the buffer-

specimen interface with the echo returning from the free end of the specimen would be

desirable.  Small changes in the relative diameters of the buffer or the specimen will result

in large changes in the acoustic impedance, resulting in large and unconstrained variations

in the echo amplitudes.  Such amplitude variations can cause one echo to saturate and at the

same time put the other echo below the noise threshold.  Thin rod, or wire, technology in

the application of ultrasound easily avails itself to adjustment of the acoustic impedance.

As long as the compressional wavelength is greater than five times the diameter of the

buffer and the specimen, the waves will propagate without dispersion.  The relationship of

the diameter (D) to wavelength (λ) may be shown as follows:

      D λO ≤ 0.2       D λt ≤ 1.2
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Where λ is the acoustic velocity divided by the acoustic frequency and the subscript

denotes the extensional (o), or the torsional (t) wave mode.

The cross sectional area or the polar moment of inertia, depending upon whether the wave

is propagating as longitudinal (extensional) or shear (torsional), respectively, influences the

acoustic impedance.  For buffers and specimens that can be described as solid right circular

cylinders, the acoustic impedance is:

    ZO = πρCo D
2 4 (Extensional waves)

    Zt = πρCt D
4 32 (Torsional waves)

Where ρ is the density, D is the diameter, and C is the respective sound velocity.  The

impedance for torsional waves take into account the polar moment of inertia for a solid right

circular cylinder, rather than the cross sectional area used to determine the impedance for

extensional waves.  Notice the strong effect the diameter has on the acoustic impedance.

The determination of the optimum reflection coefficient may proceed from the reflected

intensity relationship and the solution of the quadratic equation as follows:
Let:     r = Z2 Z1

Then:     R = r − 1( ) r + 1( )[ ] 2

    R + T = 1

  A = OI R (buffer/specimen interface echo amplitude)

    B = OI T 2 (specimen free end echo amplitude)

Let:   A = B (equal amplitude reflections)

    OI R = OI T 2

    T
2 = 1 − R( )2

    OI R = OI 1 − R( ) 2 = OI R 2 − 2R + 1( )
    R = R 2 − 2R + 1

Subtract   R:     0 = R 2 − 3R + 1

QUADRATIC SOLUTION:

      R = 3 ± 51 2( ) 2 = 2.618;0.382 (wave intensity)

      R
1 2 = r − 1( ) r + 1( ) = ±1.619; ±0.618 (wave pressure)

Solve For r in Terms of R:

    r = 1 + R 1 2( ) 1 − R 1 2( )
      r = Z2 Z1 = ±4.236;       r = Z2 Z1 = ±0.236
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Only the positive roots are used since the negative roots are imaginary.

Note:  Buffer-Specimen relationship where the buffer diameter is equal to or greater than 30

λ:  2L/CBUFFER= N(2thk)/CSPECIMEN, for bulk specimens also holds for thin rods with one

exception.  Where N is the number of the echo; thk is the thickness of the specimen, and L

is the length of the buffer.  In the application of the buffer to thin rod wave technology, the

large diameter buffer is not required.  The buffer, or delay line, may be adjusted in diameter

to match the impedance of the magnetostrictive line on the one end and the specimen on the

other end.  A tapered delay line is sometimes referred to as a transformer, or impedance

transformer.

PRESSURE REFLECTIVITY AND TRANSMISSIVITY2

The assumption for the following analysis is that the waves are generated in the first

medium and travel into the second medium.  Some of the pressure signal is reflected at the

interface of the two mediums, but once entering the second medium, the pressure signal

propagates without reflection.  Assume the boundary at     X = 0, so that the exponentials

    e
±jkx = 1.  The total pressure is the same on both sides of the boundary; The particle

velocity into the boundary equals the particle velocity out of the boundary on the other side.

The acoustic wave pressure distribution may be developed from transmission line theory.

The subscripts 1 and 2 refer to the first and second media.
Let:     r = 2Z 1Z (Impedance ratio at boundary)

  +P (Pressure striking the boundary)

  −P (Pressure reflected from the boundary)

    1P = 1+P + 1−P( );     2P = 2+P + 2−P( )   (Pressure amplitudes)

    X 1
u = 1 1Z( ) 1+P − 1−P( ) ;       X 2u = 1 2Z( ) 2+P − 2−P( )   (Particle velocity)

From the assumed boundary conditions,

    r 1+P − r 1−P = 2+P or     2Z 1+P − 1−P( ) = 1Z 2+P

    r 1+P − r 1−P = 1+P + 1−P

    r 1+P − 1+P = r 1−P + 1−P

    1+P r − 1( ) = 1−P r + 1( )
    1−P 1+P = r − 1( ) r + 1( ) (normal incidence pressure reflectivity)

    2+P = 1+P + 1−P (pressure partitioning)

    1−P = 2+P − 1+P

    2Z 1+P − 1−P( ) = 1Z 2+P

    2Z 1+P − 2+P − 1+P( )( ) = 1Z 2+P

    2Z 1+P − 2+P + 1+P( ) = 1Z 2+P
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    2Z 2 1+P − 2+P( ) = 1Z 2+P

    22Z 1+P − 2Z 2+P = 1Z 2+P

    22Z 1+P = 1Z 2+P + 2Z 2+P = 2+P 1Z + 2Z( )
    2+P 1+P = 2 2Z 2Z + 1Z( ) = 2r r + 1( ) ;  (normal incidence pressure

transmissivity)

PRESSURE COEFFICIENT (N/m2):

    PR = r − 1( ) r + 1( )

    PT = 2r r + 1( )
Where:       Z2 > Z1: r > 1 (In-phase)

      2Z < 1Z : r < 1 (Phase reversed)

INTENSITY COEFFICIENT (W/m2):

    ER r − 1( ) 2 r + 1( ) 2

    ET = 4Z2Z1 Z2 + Z1( ) 2 = 4r r + 1( ) 2

The acoustic measurements for the extensional and torsional (shear) wave velocities may be

used to calculate the various moduli in homogeneous, isotropic solids.  The following

Table of Material Properties provides a listing of typical formulae for determining the

moduli.

TABLE OF MATERIAL PROPERTIES
Poisson's Ratio: ν = O

2C (2 t
2C )[ ] − 1

Young's Modulus:
    E = O

2C ρ
Shear Modulus:

    G = t
2C ρ

Bulk Modulus:
    
K = O

2C t
2C ρ 3 3 t

2C − O
2C( )( )

Lame Constant: λ = νE 1 + ν( ) 1 − 2ν( )( )
Bulk Compressional Velocity:

    LC
= tC O

2C − 4 t
2C( ) O

2C − 3 t
2C( )

TABLE OF VARIABLES

A Ultrasonic reflection from the delay line to specimen interface
α Attenuation coefficient, nepers per unit length (nepers/m)
B, C First and second ultrasonic reflections from the specimen to air interface
C Acoustic velocity (m/s)
Ct Torsion wave velocity
D Diameter (meters)
f frequency (Hz)
Io Intensity of ultrasound (W/m2)
L Length (meters)
λ Wavelength, distance per cycle of acoustic waveform (m/cycle)
λo Wavelength of extensional wave
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λ t Wavelength of torsional wave
N An integer value (1,2,3,...etc.)
P+ Positive acoustic pressure wave
P- Negative acoustic pressure wave
P1 Acoustic pressure in the first medium
P2 Acoustic pressure in the second medium
R Ultrasonic reflection coefficient, propagation in direction of transducer to specimen

at the time of reflection
r Ratio of the acoustic impedance of the second medium to the acoustic impedance of

the first medium
R ' Returning ultrasonic reflection coefficient, propagation in direction of specimen to

transducer at the time of reflection
RE Intensity reflection coefficient
RP Pressure reflection coefficient
T Ultrasonic transmission coefficient, propagation in direction of transducer to

specimen
T ' Returning ultrasonic transmission coefficient, propagation in direction of specimen

to transducer
TE Intensity transmission coefficient
TP Pressure transmission coefficient
ux1 Acoustic particle velocity in first medium
ux2 Acoustic particle velociy in second medium
Z1 Acoustic impedance of first medium
Z2 Acoustic impedance of second medium

THIN WALL STRUCTURES

Acoustic and ultrasonic waves may propagate in relatively thin plates, in terms of the

wavelength of the propagating sound.  The sound waves will propagate as resonances of

the structure and may, under some circumstances, be highly dispersive.  There will often

be either plane harmonic waves or overtones formed within such structures and these

waves become the subject of Modal analysis and Acoustic Emission analysis.  The

following Table suggests some of the modes of sound propagation found in thin wall

structures:
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WAVE SOLUTION APPROXIMATIONS24

Mode Displacement fD = frequency X thickness,
m = integer

Symmetric Normal
    
2m − 1( ) CS 2( )

Asymmetric Normal
    
2m CS 2( )

Symmetric Normal
    2m − 1( ) CL 2( )

Asymmetric Normal
    2m CL 2( )

Symmetric In Plane
    2m CS 2( )

Asymmetric In Plane
    2m − 1( ) CS 2( )

Symmetric In Plane
    mCLCS CL

2 − CS
2( )1/ 2

Asymmetric In Plane

    
XmCLCS π CL

2 − CS
2( )1/ 2[ ] *

*Transcendental solution for Xm:  
    
TanXm =

2 − CL CS( )2[ ]1/ 2
1 − CL CS( )2

Xm

    tan x = bx ,  where  
    
x = πfD

CL

CL
2

CS
2

− 1






1/ 2

  and  
    
b =

2 − CL CS( )2[ ]2
1 − CL CS( )2

Solve for the roots,   xm :  fD = xm

π
CLCS

CL
2 − CS

2( )1/ 2

VIBRATION FREQUENCY CALCULATIONS

Flexural Waves

Criteria:  Width >> Thickness;  Waves are highly dispersive;   Cf ∝ f ; the larger the

area, the greater the coupling to fluids.

Cf = Yk2

ρ 1 − ν2( )












1/ 4

ω1/ 2 = o
2c k2

1 − ν2( )












1/ 4

ω1/ 2

Where:

k = Radius of gyration:  Plates:  a 12

a = Thickness

Y = Young's modulus

ω = 2πf

ν = Poisson's Ratio
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ρ = density
Bars,   width ≅ a

Cf = Yk2

ρ










1/ 4

ω1/ 2 = o
2c 2k[ ]1/ 4 ω1/ 2 = oωc k

Rectangular Bar Clamped at One End

 1f = 0.5596
L2

COk Where k = Radius of gyration

k = a

12
   for rectangular bars,

where a = Thickness of bar in the direction of vibration.

 k = a

2
       for round bars, where a = diameter

2f = 6.267 1f

3f = 17.55 1f

4f = 34.39 1f

  For the second through fourth tone

Bar, Both Ends Free

1f = 1.133
L2

πCOk flexural vibration mode

Longitudinal Vibration of Bars

 1f = CO

λ
= CO

2L
= 1

2L
CO Plus Harmonics

Circular Plate unsupported (Free)

1f = 0.412t

R2
CO

1
1 − ν2 2f = 0.193t

R2
CO

1
1 − ν2

Where: t = thickness, R = radius, ν = Poisson's Ratio Modes of Vibration

Circular Plate Lightly Supported at the Outside Edge

1f = 0.233t

R2
CO

1
1 − ν2

Circular Plate Clamped at Outside Edge

01f = 0.467t

R2
CO

1
1 − ν2

With Overtones
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02f = 013.91 f 03f = 8.75 01f 11f = 2.09 01f

21f = 3.43 01f 12f = 5.98 01f

Pipes, Closed One End

1f = C

λ
= C

4L

Where C is the velocity of sound in the gas within the pipe, and the length is an odd

multiple of quarter wavelengths.

Open Pipes

1f = C

λ
= C

2L

Where the length is an even multiple of quarter wavelengths.

CONCLUSIONS

The specialized techniquesl5 that are available at the Acoustic and Ultrasonic Properties of

Materials Laboratory allow us to perform difficult ultrasonic velocity measurements as well

as other kinds of acoustic measurement, including acoustic emission detection. We are

continuously upgrading techniques through ongoing research projects, and stay abreast of

new methods through close contact with researchers around the world.  The personnel at

the Acoustic Laboratory are always available to discuss and assist with unique problems

from requestors.
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ABOUT THE REFERENCES

A larger list of references could undoubtedly have been presented. However, each of these

references contains an ample supply of references, should a more extensive investigation be

warranted.

The first fifteen references are discussed in the text of this report. Of the remaining eight,

the ASNT handbook21 contains a most liberal review of techniques, along with some

limited theory. This handbook is currently under revision, and when the new edition

becomes available, it may contain much of the information on pulse overlap and pulse

superposition contained in references 1, 3, 4, 5, 6, 7, 19, and 20.  References 22 and 23

contain information on the techniques of determining the dynamic elastic moduli in geologic

formation, and much of this theory is applicable to a variety of other structural materials.

References 16 and 17 contain general ultrasonic theory and information on methods,

similar to the information presented in references 2, 9, and 10.
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Recent advancements in the technology of detecting and propagating ultrasonic waves in

filaments and thin wiresl5,l8 have been of great value to some industries concerned with

product quality control, and measurements of elastic constants over extreme temperature

ranges. These advancements were made possible by new designs in ultrasonic transducers.

Should this technology become required at LLNL, equipment is commercially available for

use from -273°C to 5000°C.
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Appendix A
Interdepartmental letterhead

Mail Station L - 333

Ext:   2-7089

Current Date

TO : Client

FROM: Al Brown

SUBJECT: DYNAMIC MODULI FOR COMMERCIAL GRADE VANADIUM
                                                                                                             

The ultrasonic velocities were measured on vanadium plate in preparation for ultrasonic
inspection of tubing.  The estimated accuracy for the ultrasonic velocities is ±1%.  It should
be noted that the listed values may be specimen specific.

Specimen I.D. Vanadium
Geometry (cm) Plate
Thickness (mm) 1.55
Density (kg/m3 ) 6 , 1 3 4
Frequency, MHz (Vl) 30 .00
Frequency, MHz (Vs) 20.00
Longitudinal Velocity (m/s) 5 , 9 6 5
Shear Velocity (m/s) 2 , 6 2 6
Thin Rod Velocity (m/s) 4 , 3 6 2
Rayleigh Velocity (m/s) 2 , 4 6 5
Poisson's Ratio 0 .3798
Young's Modulus (GPa) 116.7
Shear Modulus (GPa) 42.3
Lame´ Modulus (GPa) 133.7
Bulk Modulus (GPa) 161.9

Lower test frequencies were found inadequate.  At 30 MHz, there are approximately 8
wavelengths of material thickness thereby avoiding the possibility of wave interference.
The proposed tubing of the same material has a nominal wall thickness of 0.635 mm
(0.025 inch), about 3 wavelengths thick at 30 MHz.  A 30 MHz, highly damped broad
band transducer will probably suffice if used with a wide bandwidth, high frequency
receiver.  A crack width of 50.8 µm (0.002 inch) will be approximately one quarter
wavelength and will reflect the sound at 30 MHz if the crack length is in-plane and is at
least 3.5 wavelengths (0.8 mm) long oriented normal to the sound propagation direction.
A 30 MHz transducer with a spherical focal length of one inch should be able to detect a
flaw of 8 nm2 (13 µin2) area.
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Appendix B

ATTENUATION OF ULTRASOUND

GENERAL EQUATIONS:

For pulse-echo

 2I
1I

= −2αe ;  2P
1P

= −αe ;  
dB

λ
= dB

µs
*

610
freq

;  
dB

m
= dB

µs
*

610
velocity

Where:

I2/I1 = ratio of intensities at two points a unit distance apart, and  I2 < I1.

P2/P1 = ratio of pressures at two points a unit distance apart, and  P2 < P1.

α = attenuation constant (nepers/unit distance)

α ' = 8.686 α (dB/cm)

A = λ α (nepers/wavelength) where λ equals velocity/frequency

A1 = 8.686 λ α (dB/wavelength)

ATTENUATION RESULTS FROM:

1) Beam spread
(finite transducer size)

2) Field effects

3) Couplant mismatch
(direct couplant reflection loss, waterbuffer)

4) Transducer loading
(couplant or specimen)

5) Sample geometry
(defect reflection: size, shape, surface, impedance)

6) Diffraction pattern
(losses from beam divergence, wave front phase effects)

7) Non parallelism
(rough surfaces)

8) Absorption:
a) Dislocation damping (radiation damage, internal oxidation)
b) Motion of domain walls
c) Magnetic "rotation" effect near saturation
d) Visco-elastic losses (thermo-elastic losses, diffusion of atoms)
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9) Scattering:
a) By small objects
b) By extended (internal) surfaces (reflection)
c) By wave front phase effects (bending and distortion) due to space variation,

velocity, refraction index

10) Diffusion

11) Viscous damping losses

12)  Relaxation losses

And, finally, attenuation caused by grain size, yield strength, crystalline damage,

impact strength, and hardness.
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Short buffer with long specimen

Long buffer with short specimen

Appendix C

ATTENUATION MEASUREMENTS25

BUFFER ROD TECHNIQUE

The reflection coefficient at the buffer-sample interface must have a moderate value so that

the transmitted and reflected portions of the wave at the buffer-sample interface have

comparable amplitudes.  Nearly equal acoustic impedances in the two materials are

required.

The loss per echo of the multiple echoes in the buffer rod must be sufficient in the short

buffer case to ensure that these echoes do not interfere with the echoes returning from the

sample.

In the long buffer rod, the attenuation should be very low.  In either case, the sample

echoes should not coincide with the buffer echoes, but have well-separated echoes.

A0

A1

A2

B
uf

fe
r

Buffer

Specimen

Specimen
Transducer

Transducer

  

FORWARD PROPAGATION

    
R = Z2 − Z1

Z2 + Z1     
T = R + 1 = Z2 − Z1

Z2 + Z1

+ 1

REVERSE PROPAGATION

    
R’ = Z1 − Z2

Z1 + Z2     
T’ = Z1 − Z2

Z1 + Z2

+ 1

DEFINITIONS
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A0 = R = Z2 − Z1

Z2 + Z1

   First Interface Reflection, Buffer-Specimen

    
A1 = TT’ = (Z2 − Z1

Z2 + Z1

+ 1)(Z1 − Z2

Z1 + Z2

+ 1)

    
A1 = 4Z2Z1

(Z1 + Z2 )
2

   First Reflection from Specimen Back Surface

But:     A1 ∝ R    and     T = R + 1     T
’ = 1 − R

Therefore:     A1 = TT’ = (R + 1)(1 − R) = 1 − R2

And:     A2 = TR’T’ = (R + 1)(1 − R)(R
_

) = R
_

(1 − R2 )

Where     R
_

 is the phase reversal on the second reflection:  numerically the same as   R , but

reversed polarity.

ATTENUATION

A1 = (1 − R2 ) −α 2 Le

A2 = R
_

(1 − R2 ) −α 4 Le

α = nepers per unit length

AMPLITUDE RATIO

B0 = A0 / A1 = R α 2 Le / (1 − R2 )

B2 = A2 / A1 = R
_

−α 2 Le

B0B2 = (R α 2 Le ) R
_

−α 2 Le
1 − R2

= (1)R2

1 − R2

    R = [B0B2 / (1 + B0B2 )]
1/2

    
R = [

A2

A1

A0

A1

/ (1 + A2

A1

A0

A1

)]1/2

    α = [ln(R / B2 )] / 2L

    
α = [ln((

A2

A1

A0

A1

/ (1 + A2

A1

A0

A1

))1/2 /
A2

A1

)] / 2L
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